Field output correction factors using a fully characterized plastic scintillation detector (HYPERSCINT RP-200)

As small fields become increasingly important in radiation therapy, accurate dosimetry is essential for ensuring precise dose calculation and treatment optimization. Despite the availability of small volume detectors, small field dosimetry remains challenging. The new plastic scintillation detector (PSD) from the HYPERCINT RP-200 platform from Medscint offers a promising solution with minimal correction requirements for small field measurements.

This study focused on characterizing the field output correction factors of the PSD across a wide range of field sizes and demonstrating its potential for determining correction factors for other small field detectors. Monte Carlo simulations and experimental comparisons were used to assess the system’s performance. The PSD exhibited near-unity correction factors (1.002 to 0.999) across field sizes between 0.6×0.6 cm² and 30×30 cm², with an impressive total uncertainty of 0.5%.

The PSD is shown to be a highly accurate and reliable detector for small field dosimetry, and it can also be used to determine correction factors for other dosimeters with great precision.

PREPRINT
Luc Gingras (1,2), Yunuen Cervantes (1,2,3), Frederic Beaulieu (1,2), Magali Besnier (1,2), Benjamin Coté (4), Simon Lambert-Girard (4), Danahé LeBlanc (4), Yoan LeChasseur (4), François Therriault-Proulx (4), Luc Beaulieu (1,2,3), Louis Archambault (1,2,3) | 1. CHU de Québec–Université Laval, Québec – Canada, 2. Centre de recherche du CHU de Québec, Québec – Canada, 3. Université Laval, Québec – Canada, 4. Medscint, Québec – Canada

Characterization of a novel time-resolved, real-time scintillation dosimetry system (HYPERSCINT RP-FLASH) for ultra-high dose rate radiation therapy applications

This study evaluates a novel scintillation dosimetry solution developed by Medscint for ultra-high dose rate (UHDR) radiotherapy, the HYPERSCINT RP-FLASH. The system was tested on an UHDR electron beamline, demonstrating dose linearity and independence from dose rate (1.8–1341 Gy/s) and dose per pulse (0.005–7.68 Gy) within ±3% tolerance. The system accurately measured doses per pulse up to 120 Hz.

With daily calibrations and specific correction factors, the system provides real-time, millisecond-resolved dosimetric measurements for pulsed conventional and UHDR beams, showing promise for applications in FLASH-RT.

PREPRINT
Alexander Baikalov (1,2,3), Daline Tho (1), Kevin Liu (1,4), Stefan Bartzsch (2,3), Sam Beddar (1,4), Emil Schüler (1,4) | 1. University of Texas MD Anderson Cancer Center, Houston, TX – USA, 2. Technical University of Munich – Germany, 3. German Research Center for Environmental Health, Neuherberg – Germany, 4. The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX – USA

Plastic scintillator dosimetry of ultrahigh dose-rate 200 MeV electrons at CLEAR

Very high energy electron (VHEE) beams with energies greater than 100 MeV may be promising candidates for FLASH radiotherapy due to their favourable dose distributions and accessibility of ultrahigh dose-rates (UHDR). The standard dosimeters used for conventional radiotherapy, including ionization chambers and film, have limited application to UHDR radiotherapy due to deficits in dose rate independence and temporal resolution. The performance of PSDs in this work suggest they may be useful real-time dosimeters for applications in UHDR VHEE radiotherapy.

IEEE Xplore
Alexander Hart (1), Cloé Giguère (2,6), Joseph Bateman (3,4), Pierre Korysko (3,4), Wilfrid Farabolini (3), Vilde Rieker (3,5), Nolan Esplen (1), Roberto Corsini (3), Manjit Dosanjh (3,4), Luc Beaulieu(2,6), Magdalena Bazalova-Carter (1) | 1. Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada, 2. Département de Physique, de génie Physique et d’optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, QC, Canada, 3. CERN, Geneva, Switzerland, 4. Department of Physics, University of Oxford, Oxford, United Kingdom, 5. Department of Physics, University of Oslo, Oslo, Norway, 6. Département de radio-oncologie et Axe Oncologie duCRCHUde Québec, CHUde Québec – Universit é Laval, Quebec, QC, Canada

Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motion-included dosimetry for MR-linac

The increased treatment complexity and the motion-delivery interplay during stereotactic body radiotherapy (SBRT) on an MR-linac treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This study demonstrates the excellent suitability of a the Medscint novel hybrid film-scintillators cassette for simultaneous multi-spatial, temporal, and motion-included dosimetry.

MEDICAL PHYSICS
Prescilla Uijtewaal (1), Pim Borman (1), Benjamin Côté (2), Yoan LeChasseur (2), François Therriault-Proulx (2), Rocco Flores (3), Stephanie Smith (3), Grant Koenig (3), Bas Raaymakers (1), Martin Fast (1) | 1. Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands, 2. Medscint, Québec, Quebec, Canada, 3. Modus QA, London, Ontario, Canada

Characterization of a 0.8 mm³ Medscint Plastic Scintillator Detector System for Small Field Dosimetry

The scintillator-based dosimetry system HYPERSCINT RP-200, coupled with a 0.8 mm³ plastic scintillator detector, demonstrated excellent dosimetric properties for small field radiation therapy, including good repeatability, dose linearity, and accuracy down to field sizes as small as 0.5 × 0.5 cm².

Physics in Medicine & Biology
Elena Timakova (1,2), Magdalena Bazalova-Carter (1) , Sergei Zavgorodni (2) | 1. University of Victoria, British Columbia, Canada, 2. BC Cancer Agency, Vancouver Island Centre, British Columbia, Canada

Plastic scintillation detectors ready to shine as FLASH radiotherapy gathers momentum.

The team of University of Victoria’s XCITE Lab are using plastic scintillation detectors to provide real-time, small-field dosimetry in their FLASH radiotherapy experiments.

PHYSICS WORLD
| University of Victoria – XCITE Lab, Medscint

Implementation and validation of beam current transformer for Mobetron ultra-high dose rate electron beam monitoring using multi-detector approach

To evaluate the performance of a custom beam current transformer (BCT) as a beam monitoring tool for the Mobetron electron radiation therapy system at ultra-high dose rates (UHDR) using a multi-detector comparison (plastic scintillators, ion chamber and film).

2022 COMP ANNUAL SCIENTIFIC MEETING
G.Famulari (1), K.Zerouali (1), J.Renaud (2), B.Muir (1), JF.Aubry (1), F.DeBlois (1), JF.Carrier (1) | 1 – Centre Hospitalier de l’Universite de Montreal (CHUM), Montreal, QC, CA, 2 – National Research Council Canada, Montreal, QC, CA

Technical note: Characterization and practical applications of a novel plastic scintillator for online dosimetry for an ultrahigh dose rate (FLASH)

Although FLASH radiation therapy is a promising novel technique, the ultrahigh pulsed dose rates mean that experimental dosimetry is very challenging. The plastic scintillator shows a linear and reproducible response and is able to accurately measure the radiation absorbed dose delivered by 16-MeV electrons at UHPDR. The dose is measured accurately in real time with a greater level of precision than that achieved with a radiochromic film.

Med Phys. 2022
Y.Poirier (1,2), J.Xu (1), S.Mossahebi (1), F.Therriault-Proulx (3), A.Sawant (1) | 1- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland, USA, 2- Department of Medical Physics, McGill University, Quebec, Canada, 3- MEDSCINT, Quebec, Canada

Characterization of a Novel Plastic Scintillator for Instant Real- Time Dosimetry in Electron FLASH-RT

Purpose was to characterize and validate the novel HYPERSCINT RP100 plastic dosimeter as a direct pulse counter and investigate its use as a real-time in-vivo dosimeter in FLASH-RT radiobiological experiments. In conclusions, the HYPERSCINT RP100 dosimeter accurately measured the delivered radiation absorbed dose under both characterization and biological experimental conditions, with a higher degree of reliability than conventional radiochromic film. Furthermore, its 500 Hz measurement frequency could directly and accurately measure the number of pulses delivered in real time. This shows its potential for real-time in-vivo dosimetry to verify accurate delivery during biological experiments and clinical treatments.

2021 COMP ANNUAL SCIENTIFIC MEETING
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | 1- University of Maryland School of Medicine, MD, USA , 2- McGill University, QC, Canada, 3- MEDSCINT, QC, Canada

Precise Pulse Delivery Control Using Monitor Units in Electron FLASH-RT

In electron FLASH-RT, precise delivery of the correct number of pulses is critical to accurate dose administration in preclinical radiobiological studies. This work investigates the use of LINAC monitor ion chambers to most precisely control FLASH pulse delivery. Calibrated plastic scintillation detector and EBT-XD Gafchromic films were used for online and passive dosimetry, respectively. The plastic scintillation detector also served as a direct pulse counter.

2021 AAPM ANNUAL MEETING
J.Xu, Y.Poirier, A.Sawant | University of Maryland School of Medicine, MD, USA