Pre-clinical and clinical evaluation of the HYPERSCINT plastic scintillation dosimetry research platform for in vivo dosimetry during radiotherapy

The purpose of this work is to evaluate the HYPERSCINT HS-RP100 scintillation dosimetry research platform designed for clinical quality assurance (QA) for use in in vivo dosimetry measurements. The device correctly detected the treatment error when the heads were intentionally laterally shifted. In three canine clinical patients treated in multiple fractions.

J Appl Clin Med Phys. 2022
I.Schoepper (1), S.Dieterich (2), E.Alonzo Trestrail (3), M.Sean Kent (1) | Department of Radiation Oncology, University of California Davis School of Veterinary Medicine, Davis, California, USA, Department of Radiation Oncology, University of California Davis, Medical Center, Sacramento, California, USA, Pacific Crest Medical Physics, Chico, California, USA

Technical note: Characterization and practical applications of a novel plastic scintillator for online dosimetry for an ultrahigh dose rate (FLASH)

Although FLASH radiation therapy is a promising novel technique, the ultrahigh pulsed dose rates mean that experimental dosimetry is very challenging. The plastic scintillator shows a linear and reproducible response and is able to accurately measure the radiation absorbed dose delivered by 16-MeV electrons at UHPDR. The dose is measured accurately in real time with a greater level of precision than that achieved with a radiochromic film.

Med Phys. 2022
Y.Poirier (1,2), J.Xu (1), S.Mossahebi (1), F.Therriault-Proulx (3), A.Sawant (1) | 1- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland, USA, 2- Department of Medical Physics, McGill University, Quebec, Canada, 3- MEDSCINT, Quebec, Canada

Characterization of the HYPERSCINT Dosimetry System for Real-Time Dosimetry Measurements with the Varian TrueBeamLinac

Plastic scintillator/optical fibre dosimetry systems are advantageous due to their near water equivalence, waterproof construction, linear dose response, and good spatial resolution due to their small size. The nanosecond decay times of plastic scintillators enable the possibility of real-time dosimetry. We tested the new HYPERSCINT fibre detector system to determine if, in addition to the expected dose and field size responses, this system can provide real-time dose information. The HYPERSCINT system is suitable after appropriate calibration to be used to measure relative dose delivered in cGy as well as indicate changing dose conditions within 0.3 seconds.

2020 AAPM AM
C.Penner (1,2), C.Hoehr (2), C.Mendez (1), C.Duzenli (1) | BC Cancer, Vancouver, BC, CA, TRIUMF, Vancouver, BC, CA

Characterization of a Novel Plastic Scintillator for Instant Real- Time Dosimetry in Electron FLASH-RT

Purpose was to characterize and validate the novel HYPERSCINT RP100 plastic dosimeter as a direct pulse counter and investigate its use as a real-time in-vivo dosimeter in FLASH-RT radiobiological experiments. In conclusions, the HYPERSCINT RP100 dosimeter accurately measured the delivered radiation absorbed dose under both characterization and biological experimental conditions, with a higher degree of reliability than conventional radiochromic film. Furthermore, its 500 Hz measurement frequency could directly and accurately measure the number of pulses delivered in real time. This shows its potential for real-time in-vivo dosimetry to verify accurate delivery during biological experiments and clinical treatments.

2021 COMP ANNUAL SCIENTIFIC MEETING
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | 1- University of Maryland School of Medicine, MD, USA , 2- McGill University, QC, Canada, 3- MEDSCINT, QC, Canada

Precise Pulse Delivery Control Using Monitor Units in Electron FLASH-RT

In electron FLASH-RT, precise delivery of the correct number of pulses is critical to accurate dose administration in preclinical radiobiological studies. This work investigates the use of LINAC monitor ion chambers to most precisely control FLASH pulse delivery. Calibrated plastic scintillation detector and EBT-XD Gafchromic films were used for online and passive dosimetry, respectively. The plastic scintillation detector also served as a direct pulse counter.

2021 AAPM ANNUAL MEETING
J.Xu, Y.Poirier, A.Sawant | University of Maryland School of Medicine, MD, USA

Novel Plastic Scintillator for Online Dosimetry in Electron FLASH-RT

The accurate delivery of electrons at FLASH-RT dose rates in radiobiological experiments require new dosimeters that are capable of accurately measuring the radiation dose delivered at >0.55 Gy per pulse (>100 Gy/s) in real-time. The novel HYPERSCINT RP100 plastic dosimeter was able to accurately measure the delivered radiation absorbed dose under characterization and biological experimental conditions, with a higher degree of reliability than conventional radiochromic film. Furthermore, it was shown to directly and accurately measure the number of pulses delivered in real time. This shows potential for use as a real-time in-vivo dosimeter during biological experiments, as well as potential clinical applications.

2021 AAPM ANNUAL MEETING
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | 1- University of Maryland School of Medicine, Baltimore, MD, USA , 2- MEDSCINT, QC, CANADA

Investigation of the HyperscintTM Plastic Scintillation Dosimetry System Performance in a 15 MeV electron beam at FLASH dose rates

The performance of the HYPERSCINT plastic scintillation dosimetry system in a 15 MeV electron beam operating at FLASH dose rates was investigated. The linac produced a 15 MeV electron FLASH beam with an average dose rate of ~250 Gy/s and dose per pulse between 1 Gy and 1.7 Gy, at the level just above the multi-leaf collimator. The HYPERSCINT plastic scintillator detector system agreed with OSLDs within 3.5% for 10 to 20 pulse FLASH deliveries using the standard dose rate calibration for both dosimeters.

2021 COMP ANNUAL SCIENTIFIC MEETING
C.Mendez, P.Petric, T.Karan, C.Duzenli | BC Cancer, Vancouver, BC, CA

EFLASH Dosimetry On a Conventional Linac Using Pulse-Gated Delivery

To build on previous experiments and improve reproducibility of electron FLASH delivery on a conventional linear accelerator, a pulse-gating circuit was constructed and tested with several dosimeters including : a 0.01cc volume ion chamber, optically stimulated luminescence dosimeters (OSLDs), Gafchromic MD film and a novel plastic scintillation detector with spectral analysis (HYPERSCINT).

2021 AAPM ANNUAL MEETING
C.Duzenli, C.Mendez, M.Petric, J.Sweeney, D.Ta, T.Karan | BC Cancer, Vancouver, BC, CANADA

On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy

The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector as an in vivo verification tool during (192)Ir high-dose-rate brachytherapy treatments. The use of a multipoint plastic scintillation detector for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery.

MEDICAL PHYSICS
F.Therriault-Proulx, S.Beddar, L.Beaulieu | Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement

The goal of this study was to develop a novel multi-point plastic scintillation detector capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. This study demonstrates the practical feasibility of multi-point plastic scintillation detector. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry.

PHYSICS IN MEDICINE & BIOLOGY
F.Therriault-Proulx, L.Archambault, L.Beaulieu, S.Beddar | Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Québec, Canada, Département de Radio-Oncologie, Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada