First Experimental Demonstration of Time-Resolved Plastic Scintillation Dosimetry On An MR-Linac

To maximize healthy tissue sparing in the presence of respiration, we previously developed MRI-guided MLC tracking for the 1.5T Unity MR-linac (Elekta AB, SWE). Dosimetric analyses were performed using film dosimetry.

2022 AAPM AM
P.Uijtewaal (1), P.Borman (1), B.Côté (2), Y.Lechasseur (2), J.Turcotte (2), S.Lambert-girard (2), P.Woodhead (1), S.Woodings (1), W.de Vries (1), R.Flores (3), S.Smith (3), B.Raaymakers (1), M.Fast (1) | Umc Utrecht, MedScint, QC, CA, Modus Medical Devices, Inc., London, ON, CA

Pre-clinical and clinical evaluation of the HYPERSCINT plastic scintillation dosimetry research platform for in vivo dosimetry during radiotherapy

The purpose of this work is to evaluate the Hyperscint-RP100 scintillation dosimetry research platform (Hyperscint-RP100, Medscint Inc., Quebec, QC, Canada) designed for clinical quality assurance (QA) for use in in vivo dosimetry measurements.

J Appl Clin Med Phys. 2022
I.Schoepper (1), S.Dieterich (2), E.Alonzo Trestrail (3), M.Sean Kent (1) | Department of Radiation Oncology, University of California Davis School of Veterinary Medicine, Davis, California, USA, Department of Radiation Oncology, University of California Davis, Medical Center, Sacramento, California, USA, Pacific Crest Medical Physics, Chico, California, USA

Characterization of the Hyperscint Dosimetry System for Real-Time Dosimetry Measurements with the Varian TrueBeamLinac

Plastic scintillator/optical fibre dosimetry systems are advantageous due to their near water equivalence, waterproof construction, linear dose response, and good spatial resolution due to their small size. The nanosecond decay times of plastic scintillators enable the possibility of real-time dosimetry. We tested the new Hyperscint?? fibre detector system to determine if, in addition to the expected dose and field size responses, this system can provide real-time dose information.

2020 AAPM AM
C.Penner (1,2), C.Hoehr (2), C.Mendez (1), C.Duzenli (1) | BC Cancer, Vancouver, BC, CA, TRIUMF, Vancouver, BC, CA

Characterization of a Novel Plastic Scintillator for Instant Real- Time Dosimetry in Electron FLASH-RT

To characterize and validate the novel Hyperscint RP100 plastic dosimeter as a direct pulse counter and investigate its use as a real-time in-vivo dosimeter in FLASH-RT radiobiological experiments.

2021 COMP ASM
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | University of Maryland School of Medicine, Baltimore, MD, USA , McGill University, QC, CA , MedScint, QC, CA

Precise Pulse Delivery Control Using Monitor Units in Electron FLASH-RT

In electron FLASH-RT, precise delivery of the correct number of pulses is critical to accurate dose administration in preclinical radiobiological studies. This work investigates the use of LINAC monitor ion chambers to most precisely control FLASH pulse delivery.

2021 AAPM AM
J.Xu, Y.Poirier, A.Sawant | University of Maryland School of Medicine, Baltimore, MD, USA

Novel Plastic Scintillator for Online Dosimetry in Electron FLASH-RT

The accurate delivery of electrons at FLASH-RT dose rates in radiobiological experiments require new dosimeters that are capable of accurately measuring the radiation dose delivered at >0.55 Gy per pulse (>100 Gy/s) in real-time.

2021 AAPM AM
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | University of Maryland School of Medicine, Baltimore, MD, USA , Medscint, QC, CA

EFLASH Dosimetry On a Conventional Linac Using Pulse-Gated Delivery

To build on previous experiments and improve reproducibility of electron FLASH delivery on a conventional linear accelerator, a pulse-gating circuit was constructed and tested with several dosimeters.

2021 AAPM AM
C.Duzenli, C.Mendez, M.Petric, J.Sweeney, D.Ta, T.Karan | BC Cancer, Vancouver, BC, CA