Characterization of a multi-point scintillation dosimetry research platform for a low-field MR-Linac

Plastic scintillation detectors (PSDs) are attractive for enhancing MRI-guided radiation therapy (MRgRT). A study evaluating the HYPERSCINT RP-200, a multi-probe PSD system, demonstrated excellent repeatability and minimal deviation in performance metrics such as detector response and percent depth dose (PDD). PSDs maintained consistent linearity across a broad range of monitor units and showcased high accuracy in gating experiments (ex. gating experiments where 400 cGy were delivered to isocenter : < 0.8 cGy variation for central axis measures and < 0.7 cGy for the gradient sampled region). These results highlight PSDs' huge potential in improving the precision and reliability of MRgRT, especially in complex real-time applications.

Jennie Crosby (1), Chase Ruff (1), Ken Gregg (1), Jonathan Turcotte (2), Carri Glide-Hurst (1) | 1. Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA, 2. Medscint, Québec, Quebec, Canada

Evaluation of the HYPERSCINT scintillation dosimetry platform for small-field characterization of a Leksell Gamma Knife

The performance of the HYPERSCINT RP-200 with the 0.5mm x 0.5mm detector was evaluated for the characterization of small radiation fields administered using a Leksell Gamma Knife Perfexion radiosurgery device. Overall, our results show that the detector response was in close agreement with Gamma Knife Monte Carlo reference data and film measurements. Based on the obtained results, the plastic scintillation detector shows the potential for rapid validation of output factors and validation of film measurements as well its use in challenging small-field situations encountered with the Gamma Knife.

ISRS 2024 – New York
Mathieu GUILLOT (1), Patrick DELAGE (1), Vincent HUBERT-TREMBLAY (1), Francois THERRIAULT-PROULX (2), Danahé LEBLANC (2) | CHUS – Sherbrooke, Canada, Medscint – Québec, Canada

Characterization of a 0.8 mm³ Medscint Plastic Scintillator Detector System for Small Field Dosimetry

The scintillator-based dosimetry system HYPERSCINT RP-200, coupled with a 0.8 mm³ plastic scintillator detector, demonstrated excellent dosimetric properties for small field radiation therapy, including good repeatability, dose linearity, and accuracy down to field sizes as small as 0.5 × 0.5 cm².

Physics in Medicine & Biology
Elena Timakova (1,2), Magdalena Bazalova-Carter (1) , Sergei Zavgorodni (2) | 1. University of Victoria, British Columbia, Canada, 2. BC Cancer Agency, Vancouver Island Centre, British Columbia, Canada

Plastic scintillation detectors ready to shine as FLASH radiotherapy gathers momentum.

The team of University of Victoria’s XCITE Lab are using plastic scintillation detectors to provide real-time, small-field dosimetry in their FLASH radiotherapy experiments.

| University of Victoria – XCITE Lab, Medscint

Comparison Between the HYPERSCINT RP200 Scintillation Detector and Other Small Field Detectors for 10MV FFF SRS Beam Modelling On a VersaHD Linear Accelerator

Plastic scintillation detectors (PSDs) have advantageous dosimetric properties, including small size and energy independence, which make them ideal candidates for small field dosimetry.

J.Morin, JF.Cabana, M.Goulet, D.Theriault | CISSS – Chaudiere-Appalaches, Lévis, QC, CA

Implementation and validation of beam current transformer for Mobetron ultra-high dose rate electron beam monitoring using multi-detector approach

To evaluate the performance of a custom beam current transformer (BCT) as a beam monitoring tool for the Mobetron electron radiation therapy system at ultra-high dose rates (UHDR) using a multi-detector comparison (plastic scintillators, ion chamber and film).

G.Famulari (1), K.Zerouali (1), J.Renaud (2), B.Muir (1), JF.Aubry (1), F.DeBlois (1), JF.Carrier (1) | 1 – Centre Hospitalier de l’Universite de Montreal (CHUM), Montreal, QC, CA, 2 – National Research Council Canada, Montreal, QC, CA