Investigations of a Novel HyperscintTM Plastic Scintillator Detector and Hyperspectral Analysis Approach in a 74 MeV Proton Beam

The HYPERSCINT novel plastic scintillator with spectral analysis approach dosimetry system shows potential for dose measurement in a 74 MeV proton beam with negligible stem effect. The Cerenkov free spectrum may be used to facilitate calibration of the device in MV x-ray beams to improve Cerenkov removal and performance in small field dosimetry.

2021 AAPM ANNUAL MEETING
C.Duzenli (1), C.Hoehr (2), C.Belanger-champagne (2, C.Penner (3), V.Strgar (3) | 1- BC Cancer, BC, CANADA, 2- TRIUMF, BC, CANADA, 3- University of British Columbia, BC, CANADA

On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry

The goal of this study was to evaluate the nature of the stem effect light produced within an optical fiber, to quantify its composition, and to evaluate the efficiency of the chromatic technique to remove the stem effect. The chromatic stem effect removal technique is accurate in most of the situations. However, noticeable differences were obtained between very specific high-energy irradiation conditions. It would be advantageous to implement an additional channel in the chromatic stem effect removal chain or implement a spectral approach to independently remove the Cerenkov and the fluorescence components from the signal of interest. This would increase the accuracy and versatility of the actual chromatic stem effect removal technique.

PHYSICS IN MEDICINE & BIOLOGY
F.Therriault-Proulx (1)(2), L.Beaulieu (2)(3), L.Archambault (2)(3), S.Beddar (4)(1) | 1- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 2- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Québec, Canada, 3- Département de Radio-Oncologie, Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada

Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements

The properties of a new scintillation detector system for use in dosimetry of high-energy beams in radiotherapy have been measured. The most important properties of these detectors are their hgh spatial resolution and their nearly water-equivalence.

PHYSICS IN MEDICINE & BIOLOGY
A.S. Beddar, T.R. Mackie, F.H. Attix | Depanment of Medical Physics, University of Wisconsin Medical School, Madison, Wl, USA

Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration

A minimally perturbing plastic scintillation detector has been developed for the dosimetry of high-energy beams in radiotherapy. The detector system consists of two identical parallel sets of radiation-resistant optical fibre bundles, each connected to independent photomultiplier tubes.

PHYSICS IN MEDICINE & BIOLOGY
A.S. Beddar, T.R. Mackie, F.H. Attix | Depanment of Medical Physics, University of Wisconsin Medical School, Madison, Wl, USA

A Novel Multi-Headed Scintillation Detector for Fast and Efficient Dose Measurements at Multiple Locations Simultaneously

To develop and quantify the performances of a novel multi-point scintillation detector having multiple heads connected to the same optical line, allowing real-time dose measurements simultaneously at 3 positions in non-contiguous space.

2022 AAPM ANNUAL MEETING
B.Lessard (1,2), Y.Lechasseur (3), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1,2), L.Archambault (1,2) | 1- Département de physique, génie physique et optique, et Centre de recherche sur le cancer, Université Laval, Québec, CA , 2- CHU de Quebec – Universite Laval, QC, Canada, 3- MEDSCINT, QC, Canada

External beam irradiation angle measurement using Cerenkov emission

In this study, we propose a novel approach designed to take advantage of the Cerenkov angular dependency to perform a direct measurement of an external beam radiation angle of incidence. The detector offers promising perspectives for external beam radiotherapy and brachytherapy applications.

MEDICAL PHYSICS
E.Jean (1,2,3), S.Lambert-girard (4), F.Therriault-Proulx (4), L.Beaulieu (1,2) | 1- Département de physique, génie physique et optique, et Centre de recherche sur le cancer, Université Laval, QC, Canada, 2- Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, QC, CA, 3- Département de radio-oncologie du CIUSSS-MCQ, CHAUR de Trois-Rivières, QC, Canada, 4- MEDSCINT, QC, Canada

Feasibility of Plastic Scintillator Dosimeters for FLASH Therapy

To examine the capabilities of plastic scintillator dosimeters (PSDs) to accurately measure FLASH radiotherapy dose rates delivered with an x-ray tube.

2020 AAPM AM
D.Cecchi (1), F.Therriault-Proulx (2), M.Bazalova-Carter (1) | University of Victoria, Victoria, BC ,CA,, Medscint, QC, CA

Development and characterization of an optical fiber-based Cerenkov dosimeter

This study introduces a novel hybrid Cerenkov-scintillation dosimeter

2021 COMP ASM
E.Jean (1,2,3), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1,2) | CHU de Quebec – Universite Laval, QC, CA, Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, QC, CA, MedScint, QC, CA

Development of a Novel Hybrid Scintillation-Cerenkov Detector for Simultaneous Dose and Irradiation Angle Measurements

This study introduces a novel hybrid detector capable of simultaneous dose and direct irradiation angle measurements based on Cerenkov angular dependency.

2021 AAPM AM
E.Jean (1,2), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1) | CHU de Quebec – Universite Laval, QC, CA, CHAUR, Trois-Rivieres, QC, CA , MedScint, QC, CA