Characterization of a novel time-resolved, real-time scintillation dosimetry system (HYPERSCINT RP-FLASH) for ultra-high dose rate radiation therapy applications

This study evaluates a novel scintillation dosimetry solution developed by Medscint for ultra-high dose rate (UHDR) radiotherapy, the HYPERSCINT RP-FLASH. The system was tested on an UHDR electron beamline, demonstrating dose linearity and independence from dose rate (1.8–1341 Gy/s) and dose per pulse (0.005–7.68 Gy) within ±3% tolerance. The system accurately measured doses per pulse up to 120 Hz.

With daily calibrations and specific correction factors, the system provides real-time, millisecond-resolved dosimetric measurements for pulsed conventional and UHDR beams, showing promise for applications in FLASH-RT.

PREPRINT
Alexander Baikalov (1,2,3), Daline Tho (1), Kevin Liu (1,4), Stefan Bartzsch (2,3), Sam Beddar (1,4), Emil Schüler (1,4) | 1. University of Texas MD Anderson Cancer Center, Houston, TX – USA, 2. Technical University of Munich – Germany, 3. German Research Center for Environmental Health, Neuherberg – Germany, 4. The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX – USA

Plastic scintillation detectors ready to shine as FLASH radiotherapy gathers momentum.

The team of University of Victoria’s XCITE Lab are using plastic scintillation detectors to provide real-time, small-field dosimetry in their FLASH radiotherapy experiments.

PHYSICS WORLD
| University of Victoria – XCITE Lab, Medscint

Precise Pulse Delivery Control Using Monitor Units in Electron FLASH-RT

In electron FLASH-RT, precise delivery of the correct number of pulses is critical to accurate dose administration in preclinical radiobiological studies. This work investigates the use of LINAC monitor ion chambers to most precisely control FLASH pulse delivery. Calibrated plastic scintillation detector and EBT-XD Gafchromic films were used for online and passive dosimetry, respectively. The plastic scintillation detector also served as a direct pulse counter.

2021 AAPM ANNUAL MEETING
J.Xu, Y.Poirier, A.Sawant | University of Maryland School of Medicine, MD, USA

Novel Plastic Scintillator for Online Dosimetry in Electron FLASH-RT

The accurate delivery of electrons at FLASH-RT dose rates in radiobiological experiments require new dosimeters that are capable of accurately measuring the radiation dose delivered at >0.55 Gy per pulse (>100 Gy/s) in real-time. The novel HYPERSCINT RP100 plastic dosimeter was able to accurately measure the delivered radiation absorbed dose under characterization and biological experimental conditions, with a higher degree of reliability than conventional radiochromic film. Furthermore, it was shown to directly and accurately measure the number of pulses delivered in real time. This shows potential for use as a real-time in-vivo dosimeter during biological experiments, as well as potential clinical applications.

2021 AAPM ANNUAL MEETING
Y.Poirier (1), J.Xu (1), A.Ahmady (1), S.Mossahebi (1), H.Zhang (1), F.Therriault-Proulx (2), A.Sawant (1) | 1- University of Maryland School of Medicine, Baltimore, MD, USA , 2- MEDSCINT, QC, CANADA

EFLASH Dosimetry On a Conventional Linac Using Pulse-Gated Delivery

To build on previous experiments and improve reproducibility of electron FLASH delivery on a conventional linear accelerator, a pulse-gating circuit was constructed and tested with several dosimeters including : a 0.01cc volume ion chamber, optically stimulated luminescence dosimeters (OSLDs), Gafchromic MD film and a novel plastic scintillation detector with spectral analysis (HYPERSCINT).

2021 AAPM ANNUAL MEETING
C.Duzenli, C.Mendez, M.Petric, J.Sweeney, D.Ta, T.Karan | BC Cancer, Vancouver, BC, CANADA