Plastic scintillator dosimetry of ultrahigh dose-rate 200 MeV electrons at CLEAR

Very high energy electron (VHEE) beams with energies greater than 100 MeV may be promising candidates for FLASH radiotherapy due to their favourable dose distributions and accessibility of ultrahigh dose-rates (UHDR). The standard dosimeters used for conventional radiotherapy, including ionization chambers and film, have limited application to UHDR radiotherapy due to deficits in dose rate independence and temporal resolution. The performance of PSDs in this work suggest they may be useful real-time dosimeters for applications in UHDR VHEE radiotherapy.

IEEE Xplore
Alexander Hart (1), Cloé Giguère (2,6), Joseph Bateman (3,4), Pierre Korysko (3,4), Wilfrid Farabolini (3), Vilde Rieker (3,5), Nolan Esplen (1), Roberto Corsini (3), Manjit Dosanjh (3,4), Luc Beaulieu(2,6), Magdalena Bazalova-Carter (1) | 1. Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada, 2. Département de Physique, de génie Physique et d’optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, QC, Canada, 3. CERN, Geneva, Switzerland, 4. Department of Physics, University of Oxford, Oxford, United Kingdom, 5. Department of Physics, University of Oslo, Oslo, Norway, 6. Département de radio-oncologie et Axe Oncologie duCRCHUde Québec, CHUde Québec – Universit é Laval, Quebec, QC, Canada

First Experimental Demonstration of Time-Resolved Plastic Scintillation Dosimetry On An MR-Linac

In this study, UMC Utrecht research team demonstrates the feasibility of a hybrid experimental setup combining an innovative multipoint scintillator detector with film in a moving phantom quantifying MLC tracking for lung SBRT. The prototype cassette is capable of measuring dose (with film and 4 points scintillators simultaneously) during motion experiments, combining film dosimetry with time-resolved and absolute dosimetry.

P.Uijtewaal (1), P.Borman (1), B.Côté (2), Y.Lechasseur (2), J.Turcotte (2), S.Lambert-girard (2), P.Woodhead (1), S.Woodings (1), Vries (1), R.Flores (3), S.Smith (3), B.Raaymakers (1), M.Fast (1) | 1 – UMC Utrecht, Netherland, 2 – Medscint, Canada, 3 – Modus Medical Devices, Canada

Development and characterization of an optical fiber-based Cerenkov dosimeter

This study introduces a novel hybrid Cerenkov-scintillation dosimeter

E.Jean (1,2,3), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1,2) | CHU de Quebec – Universite Laval, QC, CA, Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, QC, CA, MedScint, QC, CA

Development of a Novel Hybrid Scintillation-Cerenkov Detector for Simultaneous Dose and Irradiation Angle Measurements

This study introduces a novel hybrid detector capable of simultaneous dose and direct irradiation angle measurements based on Cerenkov angular dependency.

2021 AAPM AM
E.Jean (1,2), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1) | CHU de Quebec – Universite Laval, QC, CA, CHAUR, Trois-Rivieres, QC, CA , MedScint, QC, CA

Plastic and Lead-Doped Scintillators for Ultrahigh Dose-Rate Irradiations Delivered with An X-Ray Tube

To examine the capabilities of plastic scintillators of different compositions to accurately measure dose in high dose-rate dose irradiations delivered with an x-ray tube.

2021 AAPM AM
D.Cecchi (1), C.Gigeure (2), F.Larose (2), F.Therriault-Proulx (3), L.Beaulieu (2), M.Bazalova-Carter (1) | University of Victoria, Victoria, BC ,CA,, CHU de Quebec – Universite Laval, QC, CA, MedScint, QC, CA

Deformable Scintillation Dosimeter: II. Real-Time Simultaneous Measurements of Dose and Tracking of Deformation Vector Fields

This article introduces a novel deformable dosimeter that can measure the dose distribution and track the deformation of a material during radiotherapy treatments using the HYPERSCINT dosimetry system. The dosimeter is made of an array of 19 scintillating fiber detectors embedded in a cylindrical elastomer matrix. It is imaged by two pairs of stereoscopic cameras that record the position, angulation and dose of the scintillators.

Physics in Medicine & Biology
Emily Cloutier (1,2), Luc Beaulieu(1,2), Louis Archambault (1,2) | 1. Service de physique médicale et Axe Oncologie du Centre de recherche, CHU de Québec-Université Laval, Canada, 2. Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec, Canada

Real-time dosimetry of ultrahigh dose-rate x-ray beams using scintillation detectors

FLASH radiation therapy using an ultrahigh dose-rate beam is found to eradicate tumours whilst significantly reducing radiation-induced tissue toxicity. A real-time dosimetry system is required for the technique to be implemented clinically and for further preclinical studies. This study aimed to optimize the design of scintillating detectors using inorganic materials for real-time dosimetry in ultrahigh dose-rate radiation applications. Inorganic scintillator detectors were fabricated using phosphor-based scintillating materials (Gd2O2S:Tb, La2O2S:Tb, and La2O2S:Eu) coupled with optical fibers. The initial results in ultrahigh dose-rate x-ray irradiation showed excellent linearity with signal independent of the dose rate and dose delivered. A hyperspectral approach is adopted in this study to account for the stem effect that occurs within the high energy typically used in radiotherapy.

Shahirah Shaharuddin (1), Alexander Hart (2), Daniel D. Cecchi (2), Magdalena Bazalova-Carter (2), Mark Foley (1) | 1. School of Physics, National University of Ireland Galway, Ireland, 2. Department of Physics & Astronomy, University of Victoria, Canada