Evaluation of the HYPERSCINT scintillation dosimetry platform for small-field characterization of a Leksell Gamma Knife

The performance of the HYPERSCINT RP-200 with the 0.5mm x 0.5mm detector was evaluated for the characterization of small radiation fields administered using a Leksell Gamma Knife Perfexion radiosurgery device. Overall, our results show that the detector response was in close agreement with Gamma Knife Monte Carlo reference data and film measurements. Based on the obtained results, the plastic scintillation detector shows the potential for rapid validation of output factors and validation of film measurements as well its use in challenging small-field situations encountered with the Gamma Knife.

ISRS 2024 – New York
Mathieu GUILLOT (1), Patrick DELAGE (1), Vincent HUBERT-TREMBLAY (1), Francois THERRIAULT-PROULX (2), Danahé LEBLANC (2) | CHUS – Canada, Medscint – Canada

Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motion-included dosimetry for MR-linac

The increased treatment complexity and the motion-delivery interplay during stereotactic body radiotherapy (SBRT) on an MR-linac treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This study demonstrates the excellent suitability of a the Medscint novel hybrid film-scintillators cassette for simultaneous multi-spatial, temporal, and motion-included dosimetry.

Prescilla Uijtewaal (1), Pim Borman (1), Benjamin Côté (2), Yoan LeChasseur (2), François Therriault-Proulx (2), Rocco Flores (3), Stephanie Smith (3), Grant Koenig (3), Bas Raaymakers (1), Martin Fast (1) | 1. Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands, 2. Medscint, Québec, Quebec, Canada, 3. Modus QA, London, Ontario, Canada

Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac

This study demonstrates the suitability of the HYPERSCINT PSD for accurate time- resolved dosimetry measurements in the 1.5 T MR-linac. The excellent performance during continuous MR scanning and during dynamic movement indicates the great potential of the detector to validate end-to-end workflows of online adaptive radiotherapy

Prescilla Uijtewaal (1), Benjamin Côté (2), Thomas Foppen (1), J H Wilfred de Vries (1), Simon J Woodings (1), Pim T S Borman (1), Simon Lambert-Girard (2), François Therriault-Proulx (2), Bas W Raaymakers (1), Martin F Fast (1) | 1 – UMC Utrecht, Netherland, 2 – Medscint, Canada

Investigation of temperature dependence of inorganic scintillators using the HYPERSCINT research platform

The temperature dependence of four inorganic scintillation detectors was examined spectrally using the HYPERSCINT Research Platform 200 under 6 MV photon irradiations from a LINAC. After varying only the temperature of the detectors, all scintillators demonstrated linearity when the change in photon counts with temperature in the full-width at half maximum of their spectrum are integrated. Establishing the magnitude of the temperature dependence of the materials is critical to decide whether correction factors are required. This is especially true in applications such as brachytherapy, where detectors equilibrise to body temperature.

Radiation Measurements
Owen McLaughlin (1), Michael Martyn (1,2), Christoph Kleefeld (1), Mark Foley (1) | 1. Physics Unit, School of Natural Sciences, University of Galway, Galway, Ireland, 2. Galway Clinic, Doughiska, Galway, Ireland

Use of a Commercial Plastic Scintillation Detector for Determination of Detector-Specific Small Field Output Correction Factors of Other Detectors

The goal of this work is to determine small field output correction factors of various detectors using the HYPERSCINT plastic scintillation detector as a reference and to compare values with current available data. The simple and well understood composition and geometry of the scintillation detector make it ideal to be used as a reference detector for the evaluation of field output correction factors. Field size dependent correction factors have been extracted for different detectors and show limited discrepancies with current available data. This may potentially be attributed to inter detector variability or other methodological uncertainties in published data.

M.Besnier (1), F.Beaulieu (1), F.Berthiaume (1,2), Y.Cervantes Espinosa (1), B.Côté (2), S.Lambert-girard (1,2), D.Leblanc (1,2), Y.Lechasseur (2), F.Therriault-Proulx (2), L.Archambault (1), L.Beaulieu (1), L.Gingras (1) | 1- CHU de Quebec – Universite Laval, QC, Canada, 2- MEDSCINT, QC, Canada

Plastic scintillation detectors: real-time dosimetry in the MR-Linac environment.

Optical innovation meets clinical translation : in the vanguard of adaptive MR/RT research effort, the UMC Utrecht research team works with plastic scintillation detectors to bring MR-Linac treatment to the next level.

| UMC Utrecht, Medscint

Plastic scintillation detectors ready to shine as FLASH radiotherapy gathers momentum.

The team of University of Victoria’s XCITE Lab are using plastic scintillation detectors to provide real-time, small-field dosimetry in their FLASH radiotherapy experiments.

| University of Victoria – XCITE Lab, Medscint

First Experimental Demonstration of Time-Resolved Plastic Scintillation Dosimetry On An MR-Linac

In this study, UMC Utrecht research team demonstrates the feasibility of a hybrid experimental setup combining an innovative multipoint scintillator detector with film in a moving phantom quantifying MLC tracking for lung SBRT. The prototype cassette is capable of measuring dose (with film and 4 points scintillators simultaneously) during motion experiments, combining film dosimetry with time-resolved and absolute dosimetry.

P.Uijtewaal (1), P.Borman (1), B.Côté (2), Y.Lechasseur (2), J.Turcotte (2), S.Lambert-girard (2), P.Woodhead (1), S.Woodings (1), W.de Vries (1), R.Flores (3), S.Smith (3), B.Raaymakers (1), M.Fast (1) | 1 – UMC Utrecht, Netherland, 2 – Medscint, Canada, 3 – Modus Medical Devices, Canada

Comparison Between the HYPERSCINT RP200 Scintillation Detector and Other Small Field Detectors for 10MV FFF SRS Beam Modelling On a VersaHD Linear Accelerator

Plastic scintillation detectors (PSDs) have advantageous dosimetric properties, including small size and energy independence, which make them ideal candidates for small field dosimetry.

J.Morin, JF.Cabana, M.Goulet, D.Theriault | CISSS – Chaudiere-Appalaches, Lévis, QC, CA