Development and first implementation of a novel multi-modality cardiac motion and dosimetry phantom for radiotherapy applications

Magnetic resonance guided radiation therapy (MRgRT) for real-time gating around the heart for treating ventricular tachycardia (VT) are rapidly advancing. A novel, multi-modality modular heart phantom was developed and utilized in gated radiotherapy experiments on a 0.35 T MR-linac. This phantom can simulate cardiac, cardio-respiratory, and respiratory motions, and perform dosimetric evaluations using ionization chamber and plastic scintillation detectors (PSD from MEDSCINT) configurations.

Due to their small sensitive volumes, time-resolved PSDs are effective for low-amplitude/high-frequency movements and multi-point data acquisition, enhancing dosimetric capabilities. This advancement in VT planning and delivery illustrates the phantom’s potential to meet the growing demands of cardiac applications in radiotherapy.

MEDICAL PHYSICS
Kenneth W. Gregg (1,2), Chase Ruff (1,2), Grant Koenig (3), Kalin I. Penev (3), Andrew Shepard (1), Grace Kreissler (4), Margo Amatuzio (4), Cameron Owens (4), Prashant Nagpal (5), Carri K. Glide-Hurst (1,2) | 1. Department of Human Oncology, University of Wisconsin–Madison, Madison, Wisconsin, USA, 2. Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin, USA, 3. Modus Medical Devices, Inc. (IBA QUASAR),London, Ontario, Canada, 4. Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA, 5. Department of Radiology, University of Wisconsin–Madison, Madison, Wisconsin, USA

MLC tracking and dose accumulation validation on the MR-linac using a real-time deformable dosimeter

Online MRI on the MR-linac captures detailed anatomical movements, improving real-time radiotherapy adaptations. However, the lack of a suitable MRI-compatible phantom hinders workflow validation. This study introduces a deformable phantom with integrated real-time scintillation dosimeters, validating accuracy in MLC tracking and dose accumulation using the ELEKTA Unity MR-linac.

This study demonstrates the vast potential of this novel prototype deformable phantom with integrated PSDs for real-time dosimetry measurements on an MR-linac.

2024 ESTRO Annual Congress
Madelon van den Dobbelsteen (1), Pim T.S. Borman (1), Laurie J.M. de Vries (1), Sara L. Hackett (1), Kalin Penev (1), Rocco Flores (2), Stephanie Smith (2), Yoan LeChasseur (3), Simon Lambert-Girard (3), Benjamin Côté (3) , Peter L. Woodhead (1)(4), Lando S. Bosma (1), Cornel Zachiu (1), Bas W. Raaymakers (1), Martin F. Fast (1) | 1 University Medical Center Utrecht, Radiotherapy, Utrecht, Netherlands., 2 IBA QUASAR, Modus Medical Devices Inc. London ON, Canada. , 3 Medscint, -, Quebec City, Canada. , 4 Elekta AB, -, Stockholm, Sweden.

Development of End-to-End Preclinical Treatment Verification Procedures, Traceable to NPL Air Kerma Primary Standard

Dosimetry audits are an important tool to improve quality of reported results and to support standardization of preclinical radiation research. This work presents how the combination of passive and active detectors, such as the real-time HYPERSCINT scintillation dosimetry solution, with anatomically correct mouse phantoms are adequate for the development of End-to-End dosimetry audits for the independent verification of preclinical radiation treatments.

The traceability of the detectors’ calibration to primary standards strengthens the dosimetry chain in the validation of preclinical plans, and it is consistent with the current practice for dose traceability of clinical radiotherapy treatments. Their implementation at national and regional levels could lead to databases of anonymised records, which will positively impact the dissemination of best practices and sharing of validated results.

6th Conference on small animal precision image-guided radiotherapy
Ileana Silvestre Patallo (1), Rebecca Carter (2)(3), Andrew Nisbet (2), Anna Subiel (1), Giuseppe Schettino (1) | 1. National Physical Laboratory, UK, 2. University College London, UK, 3. Cancer Institut, UK

Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motion-included dosimetry for MR-linac

The increased treatment complexity and the motion-delivery interplay during stereotactic body radiotherapy (SBRT) on an MR-linac treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This study demonstrates the excellent suitability of a the Medscint novel hybrid film-scintillators cassette for simultaneous multi-spatial, temporal, and motion-included dosimetry.

MEDICAL PHYSICS
Prescilla Uijtewaal (1), Pim Borman (1), Benjamin Côté (2), Yoan LeChasseur (2), François Therriault-Proulx (2), Rocco Flores (3), Stephanie Smith (3), Grant Koenig (3), Bas Raaymakers (1), Martin Fast (1) | 1. Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands, 2. Medscint, Québec, Quebec, Canada, 3. Modus QA, London, Ontario, Canada

Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac

This study demonstrates the suitability of the HYPERSCINT PSD for accurate time- resolved dosimetry measurements in the 1.5 T MR-linac. The excellent performance during continuous MR scanning and during dynamic movement indicates the great potential of the detector to validate end-to-end workflows of online adaptive radiotherapy

PHYSICS IN MEDICINE & BIOLOGY
Prescilla Uijtewaal (1), Benjamin Côté (2), Thomas Foppen (1), J H Wilfred de Vries (1), Simon J Woodings (1), Pim T S Borman (1), Simon Lambert-Girard (2), François Therriault-Proulx (2), Bas W Raaymakers (1), Martin F Fast (1) | 1 – UMC Utrecht, Netherland, 2 – Medscint, Canada

Plastic scintillation detectors: real-time dosimetry in the MR-Linac environment.

Optical innovation meets clinical translation : in the vanguard of adaptive MR/RT research effort, the UMC Utrecht research team works with plastic scintillation detectors to bring MR-Linac treatment to the next level.

PHYSICS WORLD
| UMC Utrecht, Medscint

Patient Specific QA for External Beam Radiotherapy Using the HYPERSCINT Plastic Scintillation Detector

Plastic scintillation detectors have interesting dosimetric properties, including small size and energy independence. These advantages make them well suited for VMAT patient-specific QA, either alone or in conjunction with a detector matrix. This work aims to determine if the HYPERSCINT scintillation dosimetry research platform can replace the classic ion chamber in a clinical patient-specific QA workflow.

2020 AAPM AM
M.Goulet | CISSS – Chaudiere-Appalaches, Lévis, QC, CA

Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement

The goal of this study was to develop a novel multi-point plastic scintillation detector capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. This study demonstrates the practical feasibility of multi-point plastic scintillation detector. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry.

PHYSICS IN MEDICINE & BIOLOGY
F.Therriault-Proulx, L.Archambault, L.Beaulieu, S.Beddar | Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Québec, Canada, Département de Radio-Oncologie, Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec, Canada

A Novel Multi-Headed Scintillation Detector for Fast and Efficient Dose Measurements at Multiple Locations Simultaneously

To develop and quantify the performances of a novel multi-point scintillation detector having multiple heads connected to the same optical line, allowing real-time dose measurements simultaneously at 3 positions in non-contiguous space.

2022 AAPM ANNUAL MEETING
B.Lessard (1,2), Y.Lechasseur (3), S.Lambert-girard (3), F.Therriault-Proulx (3), L.Beaulieu (1,2), L.Archambault (1,2) | 1- Département de physique, génie physique et optique, et Centre de recherche sur le cancer, Université Laval, Québec, CA , 2- CHU de Quebec – Universite Laval, QC, Canada, 3- MEDSCINT, QC, Canada