Investigation of temperature dependence of inorganic scintillators using the HYPERSCINT research platform

The temperature dependence of four inorganic scintillation detectors was examined spectrally using the HYPERSCINT Research Platform 200 under 6 MV photon irradiations from a LINAC. After varying only the temperature of the detectors, all scintillators demonstrated linearity when the change in photon counts with temperature in the full-width at half maximum of their spectrum are integrated. Establishing the magnitude of the temperature dependence of the materials is critical to decide whether correction factors are required. This is especially true in applications such as brachytherapy, where detectors equilibrise to body temperature.

Radiation Measurements
Owen McLaughlin (1), Michael Martyn (1,2), Christoph Kleefeld (1), Mark Foley (1) | 1. Physics Unit, School of Natural Sciences, University of Galway, Galway, Ireland, 2. Galway Clinic, Doughiska, Galway, Ireland

Brachytherapy Technique Commissioning Using the HYPERSCINT Plastic Scintillation Detector

Accurate dosimetry in brachytherapy is not an easy task, as most detectors exhibit volume averaging or energy dependence reducing their usability. Free from these limitations are plastic scintillation detectors, which makes them well suited for brachytherapy applications, either for in vivo dosimetry or commissioning. This work aims to determine if the HYPERSCINT scintillation dosimetry research platform can be used for brachytherapy dose measurement in the context of commissioning a new brachytherapy technique.

2020 AAPM ANNUAL MEETING
M.Goulet, N.Octave, P.Duguay-drouin | CISSS – Chaudiere-Appalaches, Lévis, QC, CA

On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy

The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector as an in vivo verification tool during (192)Ir high-dose-rate brachytherapy treatments. The use of a multipoint plastic scintillation detector for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery.

MEDICAL PHYSICS
F.Therriault-Proulx, S.Beddar, L.Beaulieu | Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA